The convergence of Fourier series with respect to systems of polynomial kind
Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 633-644
Cet article a éte moissonné depuis la source Math-Net.Ru
We establish sufficient conditions for the convergence of the Fourier expansions of functions from $L_\mu^p$ ($p\geqslant1$) in terms of the order of growth of the system $\{\varphi_n(t)\}$, of polynomial kind, orthonormal with respect to the measure $\mu(t)$ on $[a, b]$ and containing a constant. The convergence is considered either in a given point of the orthogonality interval or inside the interval $[c,d]\subset[a,b]$. In connection with this we obtain estimates for the Lebesgue functions of the system $\{\varphi_n(t)\}$, and we consider the localization problem of the convergence conditions.
@article{MZM_1973_14_5_a3,
author = {A. S. Zinov'ev},
title = {The convergence of {Fourier} series with respect to systems of polynomial kind},
journal = {Matemati\v{c}eskie zametki},
pages = {633--644},
year = {1973},
volume = {14},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a3/}
}
A. S. Zinov'ev. The convergence of Fourier series with respect to systems of polynomial kind. Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 633-644. http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a3/