The convergence of Fourier series with respect to systems of polynomial kind
Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 633-644.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish sufficient conditions for the convergence of the Fourier expansions of functions from $L_\mu^p$ ($p\geqslant1$) in terms of the order of growth of the system $\{\varphi_n(t)\}$, of polynomial kind, orthonormal with respect to the measure $\mu(t)$ on $[a, b]$ and containing a constant. The convergence is considered either in a given point of the orthogonality interval or inside the interval $[c,d]\subset[a,b]$. In connection with this we obtain estimates for the Lebesgue functions of the system $\{\varphi_n(t)\}$, and we consider the localization problem of the convergence conditions.
@article{MZM_1973_14_5_a3,
     author = {A. S. Zinov'ev},
     title = {The convergence of {Fourier} series with respect to systems of polynomial kind},
     journal = {Matemati\v{c}eskie zametki},
     pages = {633--644},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a3/}
}
TY  - JOUR
AU  - A. S. Zinov'ev
TI  - The convergence of Fourier series with respect to systems of polynomial kind
JO  - Matematičeskie zametki
PY  - 1973
SP  - 633
EP  - 644
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a3/
LA  - ru
ID  - MZM_1973_14_5_a3
ER  - 
%0 Journal Article
%A A. S. Zinov'ev
%T The convergence of Fourier series with respect to systems of polynomial kind
%J Matematičeskie zametki
%D 1973
%P 633-644
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a3/
%G ru
%F MZM_1973_14_5_a3
A. S. Zinov'ev. The convergence of Fourier series with respect to systems of polynomial kind. Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 633-644. http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a3/