Certain numerical characteristics of $KN$-lineals
Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 723-732.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of certain numerical characteristics in a normed lattice that characterize its conjugate space. A typical result is as follows: let $X$ be a $K_\sigma N$-space or a $KB$-lineal. If every sequence $\{x_n\}\subset X$ of pairwise disjoint positive elements with norms not exceedings 1 we have $$ \varliminf_{n\to\infty}\frac1n||x_1\vee x_2\vee\dots\vee x_n||=0, $$ then all the odd conjugate spaces $X^*, X^{***},\dots$ are $KB$-spaces.
@article{MZM_1973_14_5_a12,
     author = {Yu. A. Abramovich and G. Ya. Lozanovskii},
     title = {Certain numerical characteristics of $KN$-lineals},
     journal = {Matemati\v{c}eskie zametki},
     pages = {723--732},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a12/}
}
TY  - JOUR
AU  - Yu. A. Abramovich
AU  - G. Ya. Lozanovskii
TI  - Certain numerical characteristics of $KN$-lineals
JO  - Matematičeskie zametki
PY  - 1973
SP  - 723
EP  - 732
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a12/
LA  - ru
ID  - MZM_1973_14_5_a12
ER  - 
%0 Journal Article
%A Yu. A. Abramovich
%A G. Ya. Lozanovskii
%T Certain numerical characteristics of $KN$-lineals
%J Matematičeskie zametki
%D 1973
%P 723-732
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a12/
%G ru
%F MZM_1973_14_5_a12
Yu. A. Abramovich; G. Ya. Lozanovskii. Certain numerical characteristics of $KN$-lineals. Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 723-732. http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a12/