A modification of the uniqueness criterion for the solution of the Watson problem for a half-plane
Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 609-614.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a known theorem yielding the solution of the Watson problem for a half-plane in terms of the Ostrovskii function remains valid if the Ostrovskii function $T(r)=\sup\limits_{n\geqslant0}r^n/m_n$ is replaced by the function $\widetilde{T}(r)=\sup\limits_{r\geqslant x>0}r^x/m(x)$, where for $x\in[n, n+1)$ the function $m(x)=m_n$, or by the function $T^*(r)=\sup\limits_{r\geqslant n\geqslant0}r^n/m_n$.
@article{MZM_1973_14_5_a0,
     author = {G. V. Badalyan},
     title = {A modification of the uniqueness criterion for the solution of the {Watson} problem for a half-plane},
     journal = {Matemati\v{c}eskie zametki},
     pages = {609--614},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a0/}
}
TY  - JOUR
AU  - G. V. Badalyan
TI  - A modification of the uniqueness criterion for the solution of the Watson problem for a half-plane
JO  - Matematičeskie zametki
PY  - 1973
SP  - 609
EP  - 614
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a0/
LA  - ru
ID  - MZM_1973_14_5_a0
ER  - 
%0 Journal Article
%A G. V. Badalyan
%T A modification of the uniqueness criterion for the solution of the Watson problem for a half-plane
%J Matematičeskie zametki
%D 1973
%P 609-614
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a0/
%G ru
%F MZM_1973_14_5_a0
G. V. Badalyan. A modification of the uniqueness criterion for the solution of the Watson problem for a half-plane. Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 609-614. http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a0/