A modification of the uniqueness criterion for the solution of the Watson problem for a half-plane
Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 609-614
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that a known theorem yielding the solution of the Watson problem for a half-plane in terms of the Ostrovskii function remains valid if the Ostrovskii function $T(r)=\sup\limits_{n\geqslant0}r^n/m_n$ is replaced by the function $\widetilde{T}(r)=\sup\limits_{r\geqslant x>0}r^x/m(x)$, where for $x\in[n, n+1)$ the function $m(x)=m_n$, or by the function $T^*(r)=\sup\limits_{r\geqslant n\geqslant0}r^n/m_n$.
@article{MZM_1973_14_5_a0,
author = {G. V. Badalyan},
title = {A modification of the uniqueness criterion for the solution of the {Watson} problem for a half-plane},
journal = {Matemati\v{c}eskie zametki},
pages = {609--614},
year = {1973},
volume = {14},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a0/}
}
G. V. Badalyan. A modification of the uniqueness criterion for the solution of the Watson problem for a half-plane. Matematičeskie zametki, Tome 14 (1973) no. 5, pp. 609-614. http://geodesic.mathdoc.fr/item/MZM_1973_14_5_a0/