Torsions in modules
Matematičeskie zametki, Tome 14 (1973) no. 4, pp. 527-534.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the category of right modules over the ring $E=\operatorname{(End}_R(F)$, where $F$ is a free right R-module, a torsion is defined. It is known as Tol'skaya torsion. The correlation between torsion-free $E$-modules in the sense of Tol'skaya and torsion-free $E$-modules in the sense of Bass is investigated. It is shown that the ring $R$ is a right cogenerator if and only if in the ring of endomorphisms of any free $R$-module, $r(l(J))$ for all finitely generated right ideals $J$.
@article{MZM_1973_14_4_a9,
     author = {G. M. Brodskii},
     title = {Torsions in modules},
     journal = {Matemati\v{c}eskie zametki},
     pages = {527--534},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a9/}
}
TY  - JOUR
AU  - G. M. Brodskii
TI  - Torsions in modules
JO  - Matematičeskie zametki
PY  - 1973
SP  - 527
EP  - 534
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a9/
LA  - ru
ID  - MZM_1973_14_4_a9
ER  - 
%0 Journal Article
%A G. M. Brodskii
%T Torsions in modules
%J Matematičeskie zametki
%D 1973
%P 527-534
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a9/
%G ru
%F MZM_1973_14_4_a9
G. M. Brodskii. Torsions in modules. Matematičeskie zametki, Tome 14 (1973) no. 4, pp. 527-534. http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a9/