Local invariants of differential equations
Matematičeskie zametki, Tome 14 (1973) no. 4, pp. 499-507.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an analytic system $X=\Phi(X)$ in the neighborhood of the fixed point $X=0$. Depending on the characteristic numbers of the matrix $(\partial\Phi/\partial X)_0$, we define the integer $d\ge0$ as the ldquodimensionrdquo of the normal form or as the ldquomultiplicityrdquo of the resonance. We show that a system with $d=1$, subject to certain additional assumptions, has a finite number of invariants relative to reversible formal changes of variables $X=\Xi(Y)$. All these invariants are the coefficients of some normal form. We touch upon questions concerning invariants of relatively smooth and continuous substitutions.
@article{MZM_1973_14_4_a5,
     author = {A. D. Bruno},
     title = {Local invariants of differential equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {499--507},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a5/}
}
TY  - JOUR
AU  - A. D. Bruno
TI  - Local invariants of differential equations
JO  - Matematičeskie zametki
PY  - 1973
SP  - 499
EP  - 507
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a5/
LA  - ru
ID  - MZM_1973_14_4_a5
ER  - 
%0 Journal Article
%A A. D. Bruno
%T Local invariants of differential equations
%J Matematičeskie zametki
%D 1973
%P 499-507
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a5/
%G ru
%F MZM_1973_14_4_a5
A. D. Bruno. Local invariants of differential equations. Matematičeskie zametki, Tome 14 (1973) no. 4, pp. 499-507. http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a5/