Local invariants of differential equations
Matematičeskie zametki, Tome 14 (1973) no. 4, pp. 499-507
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an analytic system $X=\Phi(X)$ in the neighborhood of the fixed point $X=0$. Depending on the characteristic numbers of the matrix $(\partial\Phi/\partial X)_0$, we define the integer $d\ge0$ as the ldquodimensionrdquo of the normal form or as the ldquomultiplicityrdquo of the resonance. We show that a system with $d=1$, subject to certain additional assumptions, has a finite number of invariants relative to reversible formal changes of variables $X=\Xi(Y)$. All these invariants are the coefficients of some normal form. We touch upon questions concerning invariants of relatively smooth and continuous substitutions.
@article{MZM_1973_14_4_a5,
author = {A. D. Bruno},
title = {Local invariants of differential equations},
journal = {Matemati\v{c}eskie zametki},
pages = {499--507},
publisher = {mathdoc},
volume = {14},
number = {4},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a5/}
}
A. D. Bruno. Local invariants of differential equations. Matematičeskie zametki, Tome 14 (1973) no. 4, pp. 499-507. http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a5/