Asymptote of the eigenvalues of a~completely continuous operator
Matematičeskie zametki, Tome 14 (1973) no. 4, pp. 487-492.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $\varphi(x)$ is the majorant of the $s$-numbers of a completely continuous operator $A$ (i.e., $\varphi'(x)\le0$, $s_n(A)\le\varphi(n)$) and if there are found numbers $\rho\in[0,1]$ and $r_0>0$ such that $r^\rho\varphi'(r)/\varphi(r)$ will be monotonic in $(r_0,\infty)$, then for some $\alpha>0$, $\varphi(\alpha x)$ will be a majorant of the eigenvalues of $A$.
@article{MZM_1973_14_4_a3,
     author = {K. Kh. Boimatov},
     title = {Asymptote of the eigenvalues of a~completely continuous operator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {487--492},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a3/}
}
TY  - JOUR
AU  - K. Kh. Boimatov
TI  - Asymptote of the eigenvalues of a~completely continuous operator
JO  - Matematičeskie zametki
PY  - 1973
SP  - 487
EP  - 492
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a3/
LA  - ru
ID  - MZM_1973_14_4_a3
ER  - 
%0 Journal Article
%A K. Kh. Boimatov
%T Asymptote of the eigenvalues of a~completely continuous operator
%J Matematičeskie zametki
%D 1973
%P 487-492
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a3/
%G ru
%F MZM_1973_14_4_a3
K. Kh. Boimatov. Asymptote of the eigenvalues of a~completely continuous operator. Matematičeskie zametki, Tome 14 (1973) no. 4, pp. 487-492. http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a3/