Conditions under which higher derivatives belong to the classes $\varphi(L)$
Matematičeskie zametki, Tome 14 (1973) no. 4, pp. 479-486.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we will establish a sufficient condition under which the higher derivatives of $2\pi$-periodic absolutely continuous functions belong to the Orlicz classes $\varphi(L)$; if $\varphi(2t)=O(\varphi(t))$ $(t\to\infty)$, the condition is also necessary.
@article{MZM_1973_14_4_a2,
     author = {N. Temirgaliev},
     title = {Conditions under which higher derivatives belong to the classes $\varphi(L)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {479--486},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a2/}
}
TY  - JOUR
AU  - N. Temirgaliev
TI  - Conditions under which higher derivatives belong to the classes $\varphi(L)$
JO  - Matematičeskie zametki
PY  - 1973
SP  - 479
EP  - 486
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a2/
LA  - ru
ID  - MZM_1973_14_4_a2
ER  - 
%0 Journal Article
%A N. Temirgaliev
%T Conditions under which higher derivatives belong to the classes $\varphi(L)$
%J Matematičeskie zametki
%D 1973
%P 479-486
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a2/
%G ru
%F MZM_1973_14_4_a2
N. Temirgaliev. Conditions under which higher derivatives belong to the classes $\varphi(L)$. Matematičeskie zametki, Tome 14 (1973) no. 4, pp. 479-486. http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a2/