Conditions under which higher derivatives belong to the classes $\varphi(L)$
Matematičeskie zametki, Tome 14 (1973) no. 4, pp. 479-486
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work we will establish a sufficient condition under which the higher derivatives of $2\pi$-periodic absolutely continuous functions belong to the Orlicz classes $\varphi(L)$; if $\varphi(2t)=O(\varphi(t))$ $(t\to\infty)$, the condition is also necessary.
@article{MZM_1973_14_4_a2,
author = {N. Temirgaliev},
title = {Conditions under which higher derivatives belong to the classes $\varphi(L)$},
journal = {Matemati\v{c}eskie zametki},
pages = {479--486},
year = {1973},
volume = {14},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a2/}
}
N. Temirgaliev. Conditions under which higher derivatives belong to the classes $\varphi(L)$. Matematičeskie zametki, Tome 14 (1973) no. 4, pp. 479-486. http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a2/