The conditional Chebyshev center of a~compact set of continuous functions
Matematičeskie zametki, Tome 14 (1973) no. 4, pp. 469-478.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish characteristic properties of a subspace $L$ of finite codimension of the space $C(T)$ that has a Chebyshev center and a Chebyshev net for every compact set from $C(T)$. We show that these properties are the same as the conditions for the existence in $L$ of an element of best approximation for every element from $C(T)$.
@article{MZM_1973_14_4_a1,
     author = {A. L. Garkavi},
     title = {The conditional {Chebyshev} center of a~compact set of continuous functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {469--478},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a1/}
}
TY  - JOUR
AU  - A. L. Garkavi
TI  - The conditional Chebyshev center of a~compact set of continuous functions
JO  - Matematičeskie zametki
PY  - 1973
SP  - 469
EP  - 478
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a1/
LA  - ru
ID  - MZM_1973_14_4_a1
ER  - 
%0 Journal Article
%A A. L. Garkavi
%T The conditional Chebyshev center of a~compact set of continuous functions
%J Matematičeskie zametki
%D 1973
%P 469-478
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a1/
%G ru
%F MZM_1973_14_4_a1
A. L. Garkavi. The conditional Chebyshev center of a~compact set of continuous functions. Matematičeskie zametki, Tome 14 (1973) no. 4, pp. 469-478. http://geodesic.mathdoc.fr/item/MZM_1973_14_4_a1/