On the formula for the distribution of the eigenvalues of singular differential operators
Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 361-368
Cet article a éte moissonné depuis la source Math-Net.Ru
In this note we construct exampLes of a function $q(x)$, which grows arbitrarily rapidly, and a function $q(x)$ ($c_1|x|^\alpha\le q(x)\le c_2|x|^\beta$, $\beta>\alpha>0$) such that for a Sturm–Liouville operator with the constructed potential functions $q(x)$, the classical formula for the number of eigenvalues of the operator that do not exceed $\lambda$ is not true.
@article{MZM_1973_14_3_a5,
author = {M. Otelbaev and Ya. T. Sultanaev},
title = {On the formula for the distribution of the eigenvalues of singular differential operators},
journal = {Matemati\v{c}eskie zametki},
pages = {361--368},
year = {1973},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a5/}
}
TY - JOUR AU - M. Otelbaev AU - Ya. T. Sultanaev TI - On the formula for the distribution of the eigenvalues of singular differential operators JO - Matematičeskie zametki PY - 1973 SP - 361 EP - 368 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a5/ LA - ru ID - MZM_1973_14_3_a5 ER -
M. Otelbaev; Ya. T. Sultanaev. On the formula for the distribution of the eigenvalues of singular differential operators. Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 361-368. http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a5/