Relations between upper bounds of absolute values of functions and their higher derivatives
Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 329-338.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider functions $f(t)$, $-\infty$, which are $n$ times continuously differentiable with a given convex modulus of continuity of the $n$-th derivative. For a certain class of periodic functions we establish a relationship between upper bounds of the absolute values of a function and its $n$-th derivative.
@article{MZM_1973_14_3_a2,
     author = {G. V. Kirsanova},
     title = {Relations between upper bounds of absolute values of functions and their higher derivatives},
     journal = {Matemati\v{c}eskie zametki},
     pages = {329--338},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a2/}
}
TY  - JOUR
AU  - G. V. Kirsanova
TI  - Relations between upper bounds of absolute values of functions and their higher derivatives
JO  - Matematičeskie zametki
PY  - 1973
SP  - 329
EP  - 338
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a2/
LA  - ru
ID  - MZM_1973_14_3_a2
ER  - 
%0 Journal Article
%A G. V. Kirsanova
%T Relations between upper bounds of absolute values of functions and their higher derivatives
%J Matematičeskie zametki
%D 1973
%P 329-338
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a2/
%G ru
%F MZM_1973_14_3_a2
G. V. Kirsanova. Relations between upper bounds of absolute values of functions and their higher derivatives. Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 329-338. http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a2/