On a~hypothesis on Poincar\'e series
Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 453-463.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F(x_1,\dots,x_m)$ ($m\ge1$) be a polynomial with integral $p$-adic coefficients, and let $N_\alpha$, be the number of solutions of the congruence $F(x_1,\dots,x_m)\equiv0\pmod{p^\alpha}$ proof is given that the Poincaré series $\Phi(t)=\sum_{\alpha=0}^\infty N_\alpha t^\alpha$ is rational for a class of isometrically-equivalent polynomials of $m$ variables ($m\ge2$) containing a form of degree $n\ge2$ of two variables.
@article{MZM_1973_14_3_a15,
     author = {G. I. Gusev},
     title = {On a~hypothesis on {Poincar\'e} series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {453--463},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a15/}
}
TY  - JOUR
AU  - G. I. Gusev
TI  - On a~hypothesis on Poincar\'e series
JO  - Matematičeskie zametki
PY  - 1973
SP  - 453
EP  - 463
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a15/
LA  - ru
ID  - MZM_1973_14_3_a15
ER  - 
%0 Journal Article
%A G. I. Gusev
%T On a~hypothesis on Poincar\'e series
%J Matematičeskie zametki
%D 1973
%P 453-463
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a15/
%G ru
%F MZM_1973_14_3_a15
G. I. Gusev. On a~hypothesis on Poincar\'e series. Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 453-463. http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a15/