On a hypothesis on Poincaré series
Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 453-463
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $F(x_1,\dots,x_m)$ ($m\ge1$) be a polynomial with integral $p$-adic coefficients, and let $N_\alpha$, be the number of solutions of the congruence $F(x_1,\dots,x_m)\equiv0\pmod{p^\alpha}$ proof is given that the Poincaré series $\Phi(t)=\sum_{\alpha=0}^\infty N_\alpha t^\alpha$ is rational for a class of isometrically-equivalent polynomials of $m$ variables ($m\ge2$) containing a form of degree $n\ge2$ of two variables.
@article{MZM_1973_14_3_a15,
author = {G. I. Gusev},
title = {On a~hypothesis on {Poincar\'e} series},
journal = {Matemati\v{c}eskie zametki},
pages = {453--463},
year = {1973},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a15/}
}
G. I. Gusev. On a hypothesis on Poincaré series. Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 453-463. http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a15/