Topological transitivity of cylindrical cascades
Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 441-452
Voir la notice de l'article provenant de la source Math-Net.Ru
The existence is proved of a topologically transitive (t.t.) homeomorphism $U$ of the space $W=\Phi\times Z$ of the form $$
U(\varphi,z)=(T,\varphi,z+(\varphi))\quad(\varphi\in\Phi,z\in Z),\eqno(1),
$$
where $\Phi$ is a complete separable metric space, $T$ is a t.t. homeomorphism of $\Phi$ onto itself, $Z$ is a separable banach space, andf is a continuous map: $\Phi\to Z$.
For the special case $W=S^1\times R$, $T\varphi=\varphi+\theta$ ($\theta$ is incommensurable with $2\pi$) the existence is proved of t.t. homeomorphisms (1) of two types: 1) with zero measure of the set of transitive points, 2) with zero measure of the set of intransitive points. An example is presented of a continuous function $f:S^1\to R$ for which the corresponding homeomorphism (1) is t.t. for all $\theta$ incommensurable with $2\pi$.
@article{MZM_1973_14_3_a14,
author = {E. A. Sidorov},
title = {Topological transitivity of cylindrical cascades},
journal = {Matemati\v{c}eskie zametki},
pages = {441--452},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a14/}
}
E. A. Sidorov. Topological transitivity of cylindrical cascades. Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 441-452. http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a14/