Homological determinacy of the $p$-adic representations of nonsemisimple rings with power basis
Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 407-417.

Voir la notice de l'article provenant de la source Math-Net.Ru

A result on the homological determinacy of the $p$-adic representations of semisimple rings with power basis is extended to nonsemisimple rings. We construct a category whose in-decomposable objects are in one-to-one correspondence with indecomposable $\Lambda$-modules that are free and finitely generated over $\Lambda$ and different from certain completely defined $\Lambda$-modules with one generator. With the help of our result, we describe the indecomposable p-adic representations of the ring $\Lambda=Z_p[x]/((1-x)^2(1+x+\dots+x)^{p-1})$.
@article{MZM_1973_14_3_a11,
     author = {N. M. Kopelevich},
     title = {Homological determinacy of the $p$-adic representations of nonsemisimple rings with power basis},
     journal = {Matemati\v{c}eskie zametki},
     pages = {407--417},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a11/}
}
TY  - JOUR
AU  - N. M. Kopelevich
TI  - Homological determinacy of the $p$-adic representations of nonsemisimple rings with power basis
JO  - Matematičeskie zametki
PY  - 1973
SP  - 407
EP  - 417
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a11/
LA  - ru
ID  - MZM_1973_14_3_a11
ER  - 
%0 Journal Article
%A N. M. Kopelevich
%T Homological determinacy of the $p$-adic representations of nonsemisimple rings with power basis
%J Matematičeskie zametki
%D 1973
%P 407-417
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a11/
%G ru
%F MZM_1973_14_3_a11
N. M. Kopelevich. Homological determinacy of the $p$-adic representations of nonsemisimple rings with power basis. Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 407-417. http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a11/