Homological determinacy of the $p$-adic representations of nonsemisimple rings with power basis
Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 407-417
Cet article a éte moissonné depuis la source Math-Net.Ru
A result on the homological determinacy of the $p$-adic representations of semisimple rings with power basis is extended to nonsemisimple rings. We construct a category whose in-decomposable objects are in one-to-one correspondence with indecomposable $\Lambda$-modules that are free and finitely generated over $\Lambda$ and different from certain completely defined $\Lambda$-modules with one generator. With the help of our result, we describe the indecomposable p-adic representations of the ring $\Lambda=Z_p[x]/((1-x)^2(1+x+\dots+x)^{p-1})$.
@article{MZM_1973_14_3_a11,
author = {N. M. Kopelevich},
title = {Homological determinacy of the $p$-adic representations of nonsemisimple rings with power basis},
journal = {Matemati\v{c}eskie zametki},
pages = {407--417},
year = {1973},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a11/}
}
N. M. Kopelevich. Homological determinacy of the $p$-adic representations of nonsemisimple rings with power basis. Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 407-417. http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a11/