Sharpening certain cyclic inequalities
Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 305-316
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper studies the lower estimate of cyclic sums of the form $$\frac1n\sum_{i=1}^n\varphi\left(\ln\frac{a_{i+1}}{a_i},\ln\frac{a_{i+2}}{a_i+1}\right),$$ where $\varphi(x,y)$ is a twice continuous differentiable function on the whole plane, $a_{i+n}=a_i$. A structural description is given of a class of functions $\varphi$ for which the lower bound of this sum is attained for $a_i=\mathrm{const}$, i.e., equal to $\varphi(0,0)$. A means of finding the lower bound in all other cases is indicated. This result sharpens and generalizes a number of well known cyclic inequalities.
@article{MZM_1973_14_3_a0,
author = {E. K. Godunova and V. I. Levin},
title = {Sharpening certain cyclic inequalities},
journal = {Matemati\v{c}eskie zametki},
pages = {305--316},
year = {1973},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a0/}
}
E. K. Godunova; V. I. Levin. Sharpening certain cyclic inequalities. Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 305-316. http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a0/