Sharpening certain cyclic inequalities
Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 305-316.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the lower estimate of cyclic sums of the form $$\frac1n\sum_{i=1}^n\varphi\left(\ln\frac{a_{i+1}}{a_i},\ln\frac{a_{i+2}}{a_i+1}\right),$$ where $\varphi(x,y)$ is a twice continuous differentiable function on the whole plane, $a_{i+n}=a_i$. A structural description is given of a class of functions $\varphi$ for which the lower bound of this sum is attained for $a_i=\mathrm{const}$, i.e., equal to $\varphi(0,0)$. A means of finding the lower bound in all other cases is indicated. This result sharpens and generalizes a number of well known cyclic inequalities.
@article{MZM_1973_14_3_a0,
     author = {E. K. Godunova and V. I. Levin},
     title = {Sharpening certain cyclic inequalities},
     journal = {Matemati\v{c}eskie zametki},
     pages = {305--316},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a0/}
}
TY  - JOUR
AU  - E. K. Godunova
AU  - V. I. Levin
TI  - Sharpening certain cyclic inequalities
JO  - Matematičeskie zametki
PY  - 1973
SP  - 305
EP  - 316
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a0/
LA  - ru
ID  - MZM_1973_14_3_a0
ER  - 
%0 Journal Article
%A E. K. Godunova
%A V. I. Levin
%T Sharpening certain cyclic inequalities
%J Matematičeskie zametki
%D 1973
%P 305-316
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a0/
%G ru
%F MZM_1973_14_3_a0
E. K. Godunova; V. I. Levin. Sharpening certain cyclic inequalities. Matematičeskie zametki, Tome 14 (1973) no. 3, pp. 305-316. http://geodesic.mathdoc.fr/item/MZM_1973_14_3_a0/