Characterizations of Steiner points
Matematičeskie zametki, Tome 14 (1973) no. 2, pp. 243-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

To each convex compact $A$ in Euclidian space $E^n$ there corresponds a point $S(A)$ from $E^n$ such that 1) $S(x)=x$ for $x\in E^n$, 2) $S(A+B)=S(A)+S(B)$, 3) $S(A_i)\to0$, if $A_i$ converges in the Hausdorff metric to the unit sphere in $E^n$, then $S(A)$ is the Steiner point of the set $A$. The theorem improves certain earlier results on characterizations of the Steiner point.
@article{MZM_1973_14_2_a9,
     author = {E. D. Positsel'skii},
     title = {Characterizations of {Steiner} points},
     journal = {Matemati\v{c}eskie zametki},
     pages = {243--247},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a9/}
}
TY  - JOUR
AU  - E. D. Positsel'skii
TI  - Characterizations of Steiner points
JO  - Matematičeskie zametki
PY  - 1973
SP  - 243
EP  - 247
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a9/
LA  - ru
ID  - MZM_1973_14_2_a9
ER  - 
%0 Journal Article
%A E. D. Positsel'skii
%T Characterizations of Steiner points
%J Matematičeskie zametki
%D 1973
%P 243-247
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a9/
%G ru
%F MZM_1973_14_2_a9
E. D. Positsel'skii. Characterizations of Steiner points. Matematičeskie zametki, Tome 14 (1973) no. 2, pp. 243-247. http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a9/