Finite groups with special Sylow 2-subgroups
Matematičeskie zametki, Tome 14 (1973) no. 2, pp. 217-222
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $T$ be a Sylow 2-subgroup of a simple group $PSU(3,2^n)$, and $Z$ a proper subgroup belonging to the center of $T$. We shall prove that a simple finite group whose Sylow 2-subgroup is isomorphic to $T/Z$ coincides with $PSU(3,2^n)$. As a consequence we list simple groups that can be represented in the form of a product of two Schmidt groups, i.e., of minimal nonnilpotent groups.
@article{MZM_1973_14_2_a6,
author = {V. D. Mazurov and S. A. Syskin},
title = {Finite groups with special {Sylow} 2-subgroups},
journal = {Matemati\v{c}eskie zametki},
pages = {217--222},
year = {1973},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a6/}
}
V. D. Mazurov; S. A. Syskin. Finite groups with special Sylow 2-subgroups. Matematičeskie zametki, Tome 14 (1973) no. 2, pp. 217-222. http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a6/