Finite groups with special Sylow 2-subgroups
Matematičeskie zametki, Tome 14 (1973) no. 2, pp. 217-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T$ be a Sylow 2-subgroup of a simple group $PSU(3,2^n)$, and $Z$ a proper subgroup belonging to the center of $T$. We shall prove that a simple finite group whose Sylow 2-subgroup is isomorphic to $T/Z$ coincides with $PSU(3,2^n)$. As a consequence we list simple groups that can be represented in the form of a product of two Schmidt groups, i.e., of minimal nonnilpotent groups.
@article{MZM_1973_14_2_a6,
     author = {V. D. Mazurov and S. A. Syskin},
     title = {Finite groups with special {Sylow} 2-subgroups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {217--222},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a6/}
}
TY  - JOUR
AU  - V. D. Mazurov
AU  - S. A. Syskin
TI  - Finite groups with special Sylow 2-subgroups
JO  - Matematičeskie zametki
PY  - 1973
SP  - 217
EP  - 222
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a6/
LA  - ru
ID  - MZM_1973_14_2_a6
ER  - 
%0 Journal Article
%A V. D. Mazurov
%A S. A. Syskin
%T Finite groups with special Sylow 2-subgroups
%J Matematičeskie zametki
%D 1973
%P 217-222
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a6/
%G ru
%F MZM_1973_14_2_a6
V. D. Mazurov; S. A. Syskin. Finite groups with special Sylow 2-subgroups. Matematičeskie zametki, Tome 14 (1973) no. 2, pp. 217-222. http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a6/