The Hausdorff problem
Matematičeskie zametki, Tome 14 (1973) no. 2, pp. 197-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if the set of points of discontinuity of a real and everywhere symmetrically continuous function $f(x)$, $x\in(a,b)$, is closed, then it is not more than countable.
@article{MZM_1973_14_2_a3,
     author = {S. P. Ponomarev},
     title = {The {Hausdorff} problem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {197--200},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a3/}
}
TY  - JOUR
AU  - S. P. Ponomarev
TI  - The Hausdorff problem
JO  - Matematičeskie zametki
PY  - 1973
SP  - 197
EP  - 200
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a3/
LA  - ru
ID  - MZM_1973_14_2_a3
ER  - 
%0 Journal Article
%A S. P. Ponomarev
%T The Hausdorff problem
%J Matematičeskie zametki
%D 1973
%P 197-200
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a3/
%G ru
%F MZM_1973_14_2_a3
S. P. Ponomarev. The Hausdorff problem. Matematičeskie zametki, Tome 14 (1973) no. 2, pp. 197-200. http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a3/