Solution of a~problem due to Bing
Matematičeskie zametki, Tome 14 (1973) no. 2, pp. 249-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved in this article that for Alexander's “horned” sphere $S_A^2$ in $E^3$ there exists a pseudoisotopy $F_t$ of the space $E^3$ onto itself which transforms the boundary of the three-dimensional simplex $\sigma^3$ in $S_A^2$ such that the continuous mapping $F_1$ has a countable set of nondegenerate preimages of points each of which is not a locally connected continuum in $E^3$ intersecting $\partial\sigma^3$ in a singleton. This answers affirmatively a question posed by R. H. Bing in the Mathematical Congress in Moscow in 1966.
@article{MZM_1973_14_2_a10,
     author = {E. V. Sandrakova},
     title = {Solution of a~problem due to {Bing}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {249--259},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a10/}
}
TY  - JOUR
AU  - E. V. Sandrakova
TI  - Solution of a~problem due to Bing
JO  - Matematičeskie zametki
PY  - 1973
SP  - 249
EP  - 259
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a10/
LA  - ru
ID  - MZM_1973_14_2_a10
ER  - 
%0 Journal Article
%A E. V. Sandrakova
%T Solution of a~problem due to Bing
%J Matematičeskie zametki
%D 1973
%P 249-259
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a10/
%G ru
%F MZM_1973_14_2_a10
E. V. Sandrakova. Solution of a~problem due to Bing. Matematičeskie zametki, Tome 14 (1973) no. 2, pp. 249-259. http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a10/