Solution of a problem due to Bing
Matematičeskie zametki, Tome 14 (1973) no. 2, pp. 249-259
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved in this article that for Alexander's “horned” sphere $S_A^2$ in $E^3$ there exists a pseudoisotopy $F_t$ of the space $E^3$ onto itself which transforms the boundary of the three-dimensional simplex $\sigma^3$ in $S_A^2$ such that the continuous mapping $F_1$ has a countable set of nondegenerate preimages of points each of which is not a locally connected continuum in $E^3$ intersecting $\partial\sigma^3$ in a singleton. This answers affirmatively a question posed by R. H. Bing in the Mathematical Congress in Moscow in 1966.
@article{MZM_1973_14_2_a10,
author = {E. V. Sandrakova},
title = {Solution of a~problem due to {Bing}},
journal = {Matemati\v{c}eskie zametki},
pages = {249--259},
year = {1973},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a10/}
}
E. V. Sandrakova. Solution of a problem due to Bing. Matematičeskie zametki, Tome 14 (1973) no. 2, pp. 249-259. http://geodesic.mathdoc.fr/item/MZM_1973_14_2_a10/