Lower estimates of sums of polynomial characters
Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 67-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

An infinite sequence of primes $p$ is formulated, and for each $p$ polynomials of form $ax^n+b$, $(a,p=(b,p)=1$, are indicated such that $$\sum_{x=1}^p\biggl(\frac{ax^n+b}p\biggr),\quad n\asymp\frac p{\log p}.$$
@article{MZM_1973_14_1_a8,
     author = {A. A. Karatsuba},
     title = {Lower estimates of sums of polynomial characters},
     journal = {Matemati\v{c}eskie zametki},
     pages = {67--72},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a8/}
}
TY  - JOUR
AU  - A. A. Karatsuba
TI  - Lower estimates of sums of polynomial characters
JO  - Matematičeskie zametki
PY  - 1973
SP  - 67
EP  - 72
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a8/
LA  - ru
ID  - MZM_1973_14_1_a8
ER  - 
%0 Journal Article
%A A. A. Karatsuba
%T Lower estimates of sums of polynomial characters
%J Matematičeskie zametki
%D 1973
%P 67-72
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a8/
%G ru
%F MZM_1973_14_1_a8
A. A. Karatsuba. Lower estimates of sums of polynomial characters. Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 67-72. http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a8/