Lower estimates of sums of polynomial characters
Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 67-72
Voir la notice de l'article provenant de la source Math-Net.Ru
An infinite sequence of primes $p$ is formulated, and for each $p$ polynomials of form $ax^n+b$, $(a,p=(b,p)=1$, are indicated such that
$$\sum_{x=1}^p\biggl(\frac{ax^n+b}p\biggr),\quad n\asymp\frac p{\log p}.$$
@article{MZM_1973_14_1_a8,
author = {A. A. Karatsuba},
title = {Lower estimates of sums of polynomial characters},
journal = {Matemati\v{c}eskie zametki},
pages = {67--72},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a8/}
}
A. A. Karatsuba. Lower estimates of sums of polynomial characters. Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 67-72. http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a8/