Rearrangements of series in $L_p$
Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 31-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we show that the condition $$\sqrt{\sum_{n=1}^\infty f_n^2(x)}\in L_p$$ is sufficient for the set of sums of the rearranged series $\Sigma_\sigma f_n$ to be a closed linear set in $L_p$.
@article{MZM_1973_14_1_a3,
     author = {E. M. Nikishin},
     title = {Rearrangements of series in $L_p$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {31--38},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a3/}
}
TY  - JOUR
AU  - E. M. Nikishin
TI  - Rearrangements of series in $L_p$
JO  - Matematičeskie zametki
PY  - 1973
SP  - 31
EP  - 38
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a3/
LA  - ru
ID  - MZM_1973_14_1_a3
ER  - 
%0 Journal Article
%A E. M. Nikishin
%T Rearrangements of series in $L_p$
%J Matematičeskie zametki
%D 1973
%P 31-38
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a3/
%G ru
%F MZM_1973_14_1_a3
E. M. Nikishin. Rearrangements of series in $L_p$. Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 31-38. http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a3/