Rearrangements of series in $L_p$
Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 31-38
Voir la notice de l'article provenant de la source Math-Net.Ru
In this note we show that the condition
$$\sqrt{\sum_{n=1}^\infty f_n^2(x)}\in L_p$$
is sufficient for the set of sums of the rearranged series $\Sigma_\sigma f_n$ to be a closed linear set in $L_p$.
@article{MZM_1973_14_1_a3,
author = {E. M. Nikishin},
title = {Rearrangements of series in $L_p$},
journal = {Matemati\v{c}eskie zametki},
pages = {31--38},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a3/}
}
E. M. Nikishin. Rearrangements of series in $L_p$. Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 31-38. http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a3/