Class of algebras of primitive recursive functions
Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 143-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper Robinson's algebra is embedded in a countable class of algebras of primitive recursive functions. Each algebra of this class contains the operations of addition and composition of functions and also one of the operations $i_a$ which are defined as follows: $g(x)=i_af(x)$ ($a=0,1,2,\dots$) if $g(x)$ satisfies the equations $g(0)=a$, $g(x+1)=f(g(x))$. In this paper we study the properties possessed by all or almost all the algebras of this class.
@article{MZM_1973_14_1_a18,
     author = {V. L. Mikheev},
     title = {Class of algebras of primitive recursive functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {143--156},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a18/}
}
TY  - JOUR
AU  - V. L. Mikheev
TI  - Class of algebras of primitive recursive functions
JO  - Matematičeskie zametki
PY  - 1973
SP  - 143
EP  - 156
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a18/
LA  - ru
ID  - MZM_1973_14_1_a18
ER  - 
%0 Journal Article
%A V. L. Mikheev
%T Class of algebras of primitive recursive functions
%J Matematičeskie zametki
%D 1973
%P 143-156
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a18/
%G ru
%F MZM_1973_14_1_a18
V. L. Mikheev. Class of algebras of primitive recursive functions. Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 143-156. http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a18/