Class of algebras of primitive recursive functions
Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 143-156
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper Robinson's algebra is embedded in a countable class of algebras of primitive recursive functions. Each algebra of this class contains the operations of addition and composition of functions and also one of the operations $i_a$ which are defined as follows: $g(x)=i_af(x)$ ($a=0,1,2,\dots$) if $g(x)$ satisfies the equations $g(0)=a$, $g(x+1)=f(g(x))$. In this paper we study the properties possessed by all or almost all the algebras of this class.
@article{MZM_1973_14_1_a18,
author = {V. L. Mikheev},
title = {Class of algebras of primitive recursive functions},
journal = {Matemati\v{c}eskie zametki},
pages = {143--156},
year = {1973},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a18/}
}
V. L. Mikheev. Class of algebras of primitive recursive functions. Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 143-156. http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a18/