Finite simple groups whose Sylow 2-subgroups possess an extra-special subgroup of index 2
Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 127-132
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $G$ be a finite simple group with Sylow 2-subgroup $T$. If there is an extra-special sub-group of index 2 in $T$, then $G$ is isomorphic to one of the following groups: $$\begin{array}{llllll} A_8,&A_9,&M_{11},&M_{12}\\ L_2(q),&L_3(q),&U_3(q),&G_2(q),&D_4^2(q),&PSp_4(q) \end{array}$$ for an appropriate odd $q$.
@article{MZM_1973_14_1_a16,
author = {V. V. Kabanov and V. D. Mazurov and S. A. Syskin},
title = {Finite simple groups whose {Sylow} 2-subgroups possess an extra-special subgroup of index 2},
journal = {Matemati\v{c}eskie zametki},
pages = {127--132},
year = {1973},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a16/}
}
TY - JOUR AU - V. V. Kabanov AU - V. D. Mazurov AU - S. A. Syskin TI - Finite simple groups whose Sylow 2-subgroups possess an extra-special subgroup of index 2 JO - Matematičeskie zametki PY - 1973 SP - 127 EP - 132 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a16/ LA - ru ID - MZM_1973_14_1_a16 ER -
V. V. Kabanov; V. D. Mazurov; S. A. Syskin. Finite simple groups whose Sylow 2-subgroups possess an extra-special subgroup of index 2. Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 127-132. http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a16/