Finite simple groups whose Sylow 2-subgroups possess an extra-special subgroup of index 2
Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 127-132
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite simple group with Sylow 2-subgroup $T$. If there is an extra-special sub-group of index 2 in $T$, then $G$ is isomorphic to one of the following groups:
$$\begin{array}{llllll}
A_8,,{11},{12}\\
L_2(q),(q),(q),(q),^2(q),(q)
\end{array}$$
for an appropriate odd $q$.
@article{MZM_1973_14_1_a16,
author = {V. V. Kabanov and V. D. Mazurov and S. A. Syskin},
title = {Finite simple groups whose {Sylow} 2-subgroups possess an extra-special subgroup of index 2},
journal = {Matemati\v{c}eskie zametki},
pages = {127--132},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a16/}
}
TY - JOUR AU - V. V. Kabanov AU - V. D. Mazurov AU - S. A. Syskin TI - Finite simple groups whose Sylow 2-subgroups possess an extra-special subgroup of index 2 JO - Matematičeskie zametki PY - 1973 SP - 127 EP - 132 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a16/ LA - ru ID - MZM_1973_14_1_a16 ER -
%0 Journal Article %A V. V. Kabanov %A V. D. Mazurov %A S. A. Syskin %T Finite simple groups whose Sylow 2-subgroups possess an extra-special subgroup of index 2 %J Matematičeskie zametki %D 1973 %P 127-132 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a16/ %G ru %F MZM_1973_14_1_a16
V. V. Kabanov; V. D. Mazurov; S. A. Syskin. Finite simple groups whose Sylow 2-subgroups possess an extra-special subgroup of index 2. Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 127-132. http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a16/