Finite simple groups whose Sylow 2-subgroups possess an extra-special subgroup of index 2
Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 127-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite simple group with Sylow 2-subgroup $T$. If there is an extra-special sub-group of index 2 in $T$, then $G$ is isomorphic to one of the following groups: $$\begin{array}{llllll} A_8,,{11},{12}\\ L_2(q),(q),(q),(q),^2(q),(q) \end{array}$$ for an appropriate odd $q$.
@article{MZM_1973_14_1_a16,
     author = {V. V. Kabanov and V. D. Mazurov and S. A. Syskin},
     title = {Finite simple groups whose {Sylow} 2-subgroups possess an extra-special subgroup of index 2},
     journal = {Matemati\v{c}eskie zametki},
     pages = {127--132},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a16/}
}
TY  - JOUR
AU  - V. V. Kabanov
AU  - V. D. Mazurov
AU  - S. A. Syskin
TI  - Finite simple groups whose Sylow 2-subgroups possess an extra-special subgroup of index 2
JO  - Matematičeskie zametki
PY  - 1973
SP  - 127
EP  - 132
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a16/
LA  - ru
ID  - MZM_1973_14_1_a16
ER  - 
%0 Journal Article
%A V. V. Kabanov
%A V. D. Mazurov
%A S. A. Syskin
%T Finite simple groups whose Sylow 2-subgroups possess an extra-special subgroup of index 2
%J Matematičeskie zametki
%D 1973
%P 127-132
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a16/
%G ru
%F MZM_1973_14_1_a16
V. V. Kabanov; V. D. Mazurov; S. A. Syskin. Finite simple groups whose Sylow 2-subgroups possess an extra-special subgroup of index 2. Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 127-132. http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a16/