Demushkin groups
Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 121-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finitely generated pro-$p$-group with $d=d_G>1$ generators and a single defining relation. Then, if $G$ is not a Demushkin group, $G$ contains a maximal subgroup with more than $p(d?2)+2$ generators.
@article{MZM_1973_14_1_a15,
     author = {I. V. Andozhskii},
     title = {Demushkin groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {121--126},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a15/}
}
TY  - JOUR
AU  - I. V. Andozhskii
TI  - Demushkin groups
JO  - Matematičeskie zametki
PY  - 1973
SP  - 121
EP  - 126
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a15/
LA  - ru
ID  - MZM_1973_14_1_a15
ER  - 
%0 Journal Article
%A I. V. Andozhskii
%T Demushkin groups
%J Matematičeskie zametki
%D 1973
%P 121-126
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a15/
%G ru
%F MZM_1973_14_1_a15
I. V. Andozhskii. Demushkin groups. Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 121-126. http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a15/