Banach spaces in which a~theorem of Orlicz is not true
Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 101-106
Voir la notice de l'article provenant de la source Math-Net.Ru
Let the Banach space $X$ be such that for every numerical sequencet $l_n\searrow0$ there exists in $X$ an unconditionally convergent series $\Sigma x_n$, the terms of which are subject to the condition $\|x_n\|=t_n$ ($n=1,2,\dots$). Then
$$\sup_n\inf_{X_n}d(X_n,l_\infty^{(n)})\infty,$$
where $X_n$ ranges over all the $n$-dimensional subspaces of $X$.
@article{MZM_1973_14_1_a12,
author = {S. A. Rakov},
title = {Banach spaces in which a~theorem of {Orlicz} is not true},
journal = {Matemati\v{c}eskie zametki},
pages = {101--106},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a12/}
}
S. A. Rakov. Banach spaces in which a~theorem of Orlicz is not true. Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 101-106. http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a12/