Minimal extension of a~pseudoresolvent
Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 95-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a Hilbert space we consider a pseudoresolvent whose range is the whole space. We introduce a set of associated operators which are compatible with the pseudoresolvent in the same way that an operator is compatible with its resolvent. For each associated operator we construct an extension whose resolvent is an extension of the pseudoresolvent and is minimal in a certain sense.
@article{MZM_1973_14_1_a11,
     author = {E. V. Cheremnikh},
     title = {Minimal extension of a~pseudoresolvent},
     journal = {Matemati\v{c}eskie zametki},
     pages = {95--99},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a11/}
}
TY  - JOUR
AU  - E. V. Cheremnikh
TI  - Minimal extension of a~pseudoresolvent
JO  - Matematičeskie zametki
PY  - 1973
SP  - 95
EP  - 99
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a11/
LA  - ru
ID  - MZM_1973_14_1_a11
ER  - 
%0 Journal Article
%A E. V. Cheremnikh
%T Minimal extension of a~pseudoresolvent
%J Matematičeskie zametki
%D 1973
%P 95-99
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a11/
%G ru
%F MZM_1973_14_1_a11
E. V. Cheremnikh. Minimal extension of a~pseudoresolvent. Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 95-99. http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a11/