Interpolation by $L$-spline functions of many variables
Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 11-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The choice of function space allows us to make conclusions in the multidimensional case that are analogous to results in the theory of spline functions of one variable. We establish the minimum norm property, the existence and uniqueness of a solution of the interpolation problem, the property of best approximation, and the convergence of interpolation processes.
@article{MZM_1973_14_1_a1,
     author = {Yu. S. Zav'yalov},
     title = {Interpolation by $L$-spline functions of many variables},
     journal = {Matemati\v{c}eskie zametki},
     pages = {11--20},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a1/}
}
TY  - JOUR
AU  - Yu. S. Zav'yalov
TI  - Interpolation by $L$-spline functions of many variables
JO  - Matematičeskie zametki
PY  - 1973
SP  - 11
EP  - 20
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a1/
LA  - ru
ID  - MZM_1973_14_1_a1
ER  - 
%0 Journal Article
%A Yu. S. Zav'yalov
%T Interpolation by $L$-spline functions of many variables
%J Matematičeskie zametki
%D 1973
%P 11-20
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a1/
%G ru
%F MZM_1973_14_1_a1
Yu. S. Zav'yalov. Interpolation by $L$-spline functions of many variables. Matematičeskie zametki, Tome 14 (1973) no. 1, pp. 11-20. http://geodesic.mathdoc.fr/item/MZM_1973_14_1_a1/