Continuous mappings of open sets in a Banach space
Matematičeskie zametki, Tome 13 (1973) no. 6, pp. 839-848
Cet article a éte moissonné depuis la source Math-Net.Ru
If $\Gamma$ is a bounded open set of a Banach space ($B$), $\varphi$ is a completely continuous mapping of $\Gamma$ into the same space ($B$), and $E-\varphi\equiv\Phi$, where E is the identity transformation, is a uniformly fading mapping of $\Gamma$ into the Banach space, then the order of $\Phi$ on $\Gamma$ equals $\pm1$ at every point $y$ of $\Phi\Gamma$.
@article{MZM_1973_13_6_a5,
author = {R. V. Belova},
title = {Continuous mappings of open sets in {a~Banach} space},
journal = {Matemati\v{c}eskie zametki},
pages = {839--848},
year = {1973},
volume = {13},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a5/}
}
R. V. Belova. Continuous mappings of open sets in a Banach space. Matematičeskie zametki, Tome 13 (1973) no. 6, pp. 839-848. http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a5/