The approximation of periodic differentiable functions by splines with respect to a~uniform partition
Matematičeskie zametki, Tome 13 (1973) no. 6, pp. 807-816.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve the problem of determining exact estimates for the approximation by $r$-th order splines of the class $W^{r+1}$ in the metrics $C$ and $L_p$ ($1\le p\infty$).
@article{MZM_1973_13_6_a2,
     author = {A. A. Zhensykbaev},
     title = {The approximation of periodic differentiable functions by splines with respect to a~uniform partition},
     journal = {Matemati\v{c}eskie zametki},
     pages = {807--816},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a2/}
}
TY  - JOUR
AU  - A. A. Zhensykbaev
TI  - The approximation of periodic differentiable functions by splines with respect to a~uniform partition
JO  - Matematičeskie zametki
PY  - 1973
SP  - 807
EP  - 816
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a2/
LA  - ru
ID  - MZM_1973_13_6_a2
ER  - 
%0 Journal Article
%A A. A. Zhensykbaev
%T The approximation of periodic differentiable functions by splines with respect to a~uniform partition
%J Matematičeskie zametki
%D 1973
%P 807-816
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a2/
%G ru
%F MZM_1973_13_6_a2
A. A. Zhensykbaev. The approximation of periodic differentiable functions by splines with respect to a~uniform partition. Matematičeskie zametki, Tome 13 (1973) no. 6, pp. 807-816. http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a2/