The approximation of periodic differentiable functions by splines with respect to a uniform partition
Matematičeskie zametki, Tome 13 (1973) no. 6, pp. 807-816
Cet article a éte moissonné depuis la source Math-Net.Ru
We solve the problem of determining exact estimates for the approximation by $r$-th order splines of the class $W^{r+1}$ in the metrics $C$ and $L_p$ ($1\le p<\infty$).
@article{MZM_1973_13_6_a2,
author = {A. A. Zhensykbaev},
title = {The approximation of periodic differentiable functions by splines with respect to a~uniform partition},
journal = {Matemati\v{c}eskie zametki},
pages = {807--816},
year = {1973},
volume = {13},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a2/}
}
TY - JOUR AU - A. A. Zhensykbaev TI - The approximation of periodic differentiable functions by splines with respect to a uniform partition JO - Matematičeskie zametki PY - 1973 SP - 807 EP - 816 VL - 13 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a2/ LA - ru ID - MZM_1973_13_6_a2 ER -
A. A. Zhensykbaev. The approximation of periodic differentiable functions by splines with respect to a uniform partition. Matematičeskie zametki, Tome 13 (1973) no. 6, pp. 807-816. http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a2/