Pointwise decomposable sets
Matematičeskie zametki, Tome 13 (1973) no. 6, pp. 893-898.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that, under the conditional $a'0''$, every recursively enumerable (r.e.) $A\in a$ has a pointwise decomposable complement. If $A\le{}_TB$, $A$ and $\overline B$ are r.e. co-retraceable sets, and $f(x)=f^B(x)$, then there exists a r.e. co-retraceable $C$, such that $A\subset C$, $B\equiv{}_TC$, ($\forall n$) ($f(n)$), where $\overline C=\{c_0$.
@article{MZM_1973_13_6_a11,
     author = {G. N. Kobzev},
     title = {Pointwise decomposable sets},
     journal = {Matemati\v{c}eskie zametki},
     pages = {893--898},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a11/}
}
TY  - JOUR
AU  - G. N. Kobzev
TI  - Pointwise decomposable sets
JO  - Matematičeskie zametki
PY  - 1973
SP  - 893
EP  - 898
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a11/
LA  - ru
ID  - MZM_1973_13_6_a11
ER  - 
%0 Journal Article
%A G. N. Kobzev
%T Pointwise decomposable sets
%J Matematičeskie zametki
%D 1973
%P 893-898
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a11/
%G ru
%F MZM_1973_13_6_a11
G. N. Kobzev. Pointwise decomposable sets. Matematičeskie zametki, Tome 13 (1973) no. 6, pp. 893-898. http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a11/