Pointwise decomposable sets
Matematičeskie zametki, Tome 13 (1973) no. 6, pp. 893-898
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that, under the conditional $a'0''$, every recursively enumerable (r.e.) $A\in a$ has a pointwise decomposable complement. If $A\le{}_TB$, $A$ and $\overline B$ are r.e. co-retraceable sets, and $f(x)=f^B(x)$, then there exists a r.e. co-retraceable $C$, such that $A\subset C$, $B\equiv{}_TC$, ($\forall n$) ($f(n)$), where $\overline C=\{c_0$.
@article{MZM_1973_13_6_a11,
author = {G. N. Kobzev},
title = {Pointwise decomposable sets},
journal = {Matemati\v{c}eskie zametki},
pages = {893--898},
publisher = {mathdoc},
volume = {13},
number = {6},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a11/}
}
G. N. Kobzev. Pointwise decomposable sets. Matematičeskie zametki, Tome 13 (1973) no. 6, pp. 893-898. http://geodesic.mathdoc.fr/item/MZM_1973_13_6_a11/