Mappings that preserve cones in Lobachevskii space
Matematičeskie zametki, Tome 13 (1973) no. 5, pp. 687-694.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\textЛ^n$ be $n$-dimensional Lobachevskii space, and $\{l_x:X\in\textЛ^n\}$ be a family of lines, parallel to a line $l_o$, $o\in\textЛ^n$ (in a given direction). Let $\{C_x:X\in\textЛ^n\}$ be a family of circular cones in $\textЛ^n$ of opening $\alpha$ with axes $l_X$ and vertex $X$. Then, if $f:\textЛ^n\to\textЛ^n$ ($n>2$) is a bijective mapping and $f(Cx)=C_{f(x)}$, it follows thatf is a motion in the space $\textЛ^n$.
@article{MZM_1973_13_5_a6,
     author = {A. K. Guts},
     title = {Mappings that preserve cones in {Lobachevskii} space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {687--694},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_5_a6/}
}
TY  - JOUR
AU  - A. K. Guts
TI  - Mappings that preserve cones in Lobachevskii space
JO  - Matematičeskie zametki
PY  - 1973
SP  - 687
EP  - 694
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_5_a6/
LA  - ru
ID  - MZM_1973_13_5_a6
ER  - 
%0 Journal Article
%A A. K. Guts
%T Mappings that preserve cones in Lobachevskii space
%J Matematičeskie zametki
%D 1973
%P 687-694
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_5_a6/
%G ru
%F MZM_1973_13_5_a6
A. K. Guts. Mappings that preserve cones in Lobachevskii space. Matematičeskie zametki, Tome 13 (1973) no. 5, pp. 687-694. http://geodesic.mathdoc.fr/item/MZM_1973_13_5_a6/