Boundedness in the mean of orthonormalized polynomials
Matematičeskie zametki, Tome 13 (1973) no. 5, pp. 759-770.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the polynomials $\{p_n(t)\}_0^\infty$, orthonormalized on $[-1,1]$ with weight $p(t)=(1-t)^\alpha(1+t)^\beta\Pi_{\nu=1}^m|t-x_\nu|^{\delta_\nu}H(t)$, we obtain necessary and sufficient conditions for boundedness of the sequences of norms: 1) $\|(1-t)^\mu p_n\|_{L^r(y_m,1)}$, 2) $\|(1+t)^\mu p_n\|_{L^r(-1,y_0)}$ and 3) $\||t-x_\nu|^\mu p_n\|_{L^r(y_{\nu-1},y_\nu}$ with the conditions that $1\le r\infty$, $\alpha$, $\beta$, $\delta_\nu>-1$ ($\nu=\overline{1,m}$), $-1$, $H(t)>0$ on $[-1,1]$ and $\omega(H,\delta)\delta^{-1}\in L^2(0,2)$, where $\omega(H,\delta)$ is the modulus of continuity in $C(-1,1)$ of function $H$.
@article{MZM_1973_13_5_a14,
     author = {V. M. Badkov},
     title = {Boundedness in the mean of orthonormalized polynomials},
     journal = {Matemati\v{c}eskie zametki},
     pages = {759--770},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_5_a14/}
}
TY  - JOUR
AU  - V. M. Badkov
TI  - Boundedness in the mean of orthonormalized polynomials
JO  - Matematičeskie zametki
PY  - 1973
SP  - 759
EP  - 770
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_5_a14/
LA  - ru
ID  - MZM_1973_13_5_a14
ER  - 
%0 Journal Article
%A V. M. Badkov
%T Boundedness in the mean of orthonormalized polynomials
%J Matematičeskie zametki
%D 1973
%P 759-770
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_5_a14/
%G ru
%F MZM_1973_13_5_a14
V. M. Badkov. Boundedness in the mean of orthonormalized polynomials. Matematičeskie zametki, Tome 13 (1973) no. 5, pp. 759-770. http://geodesic.mathdoc.fr/item/MZM_1973_13_5_a14/