Boundedness in the mean of orthonormalized polynomials
Matematičeskie zametki, Tome 13 (1973) no. 5, pp. 759-770
Cet article a éte moissonné depuis la source Math-Net.Ru
For the polynomials $\{p_n(t)\}_0^\infty$, orthonormalized on $[-1,1]$ with weight $p(t)=(1-t)^\alpha(1+t)^\beta\Pi_{\nu=1}^m|t-x_\nu|^{\delta_\nu}H(t)$, we obtain necessary and sufficient conditions for boundedness of the sequences of norms: 1) $\|(1-t)^\mu p_n\|_{L^r(y_m,1)}$, 2) $\|(1+t)^\mu p_n\|_{L^r(-1,y_0)}$ and 3) $\||t-x_\nu|^\mu p_n\|_{L^r(y_{\nu-1},y_\nu}$ with the conditions that $1\le r<\infty$, $\alpha$, $\beta$, $\delta_\nu>-1$ ($\nu=\overline{1,m}$), $-1, $H(t)>0$ on $[-1,1]$ and $\omega(H,\delta)\delta^{-1}\in L^2(0,2)$, where $\omega(H,\delta)$ is the modulus of continuity in $C(-1,1)$ of function $H$.
@article{MZM_1973_13_5_a14,
author = {V. M. Badkov},
title = {Boundedness in the mean of orthonormalized polynomials},
journal = {Matemati\v{c}eskie zametki},
pages = {759--770},
year = {1973},
volume = {13},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_5_a14/}
}
V. M. Badkov. Boundedness in the mean of orthonormalized polynomials. Matematičeskie zametki, Tome 13 (1973) no. 5, pp. 759-770. http://geodesic.mathdoc.fr/item/MZM_1973_13_5_a14/