Diameters of certain sets in function spaces
Matematičeskie zametki, Tome 13 (1973) no. 5, pp. 637-646
Voir la notice de l'article provenant de la source Math-Net.Ru
The precise values of the diameters (according to A. N. Kolmogorov) of the class $H_C^\omega$ in the space $C[a,b]$ and lower bounds for the diameters of the class $H_p^\omega$ in the spaces $\widetilde {L_p}(o,2\pi)$ ($1\le p\le\infty$), for any modulus of continuity $\omega(\delta)$, are obtained. The latter bounds give the exact values of the odd-numbered diameters of the class $H_2^{1/2}=H_2^{\delta^{1/2}}$ and the exact order of decay of the diameters of the class $H_1^\omega$.
@article{MZM_1973_13_5_a1,
author = {Yu. I. Grigoryan},
title = {Diameters of certain sets in function spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {637--646},
publisher = {mathdoc},
volume = {13},
number = {5},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_5_a1/}
}
Yu. I. Grigoryan. Diameters of certain sets in function spaces. Matematičeskie zametki, Tome 13 (1973) no. 5, pp. 637-646. http://geodesic.mathdoc.fr/item/MZM_1973_13_5_a1/