On sets of absolute convergence for multiple trigonometric series
Matematičeskie zametki, Tome 13 (1973) no. 5, pp. 625-635.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a sufficient condition for a set of measure zero in $N$-dimensional space to be a set of absolute convergence (A. C. set) for an $N$-tuple trigonometric series. We also show that, in a certain subclass of sets of measure zero (namely in the subclass of ldquo monotonicrdquo curves), this condition cannot be sharpened.
@article{MZM_1973_13_5_a0,
     author = {R. A. Avetisyan},
     title = {On sets of absolute convergence for multiple trigonometric series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {625--635},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_5_a0/}
}
TY  - JOUR
AU  - R. A. Avetisyan
TI  - On sets of absolute convergence for multiple trigonometric series
JO  - Matematičeskie zametki
PY  - 1973
SP  - 625
EP  - 635
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_5_a0/
LA  - ru
ID  - MZM_1973_13_5_a0
ER  - 
%0 Journal Article
%A R. A. Avetisyan
%T On sets of absolute convergence for multiple trigonometric series
%J Matematičeskie zametki
%D 1973
%P 625-635
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_5_a0/
%G ru
%F MZM_1973_13_5_a0
R. A. Avetisyan. On sets of absolute convergence for multiple trigonometric series. Matematičeskie zametki, Tome 13 (1973) no. 5, pp. 625-635. http://geodesic.mathdoc.fr/item/MZM_1973_13_5_a0/