Nonhomogeneous $G$-spaces of compact Lie groups
Matematičeskie zametki, Tome 13 (1973) no. 4, pp. 531-539
Cet article a éte moissonné depuis la source Math-Net.Ru
The group $A(K)/N$ is computed, where $A(K)$ is the group of points of a Tate curve over a local field while $N$ is the group of universal norms from the group of points over a $\Gamma$-extension. As an application, the Mazur $l$-modulus of modular elliptic curves is computed for values of $l$ dividing the denominator of the absolute invariant.
@article{MZM_1973_13_4_a6,
author = {A. G. Nasybullin},
title = {Nonhomogeneous $G$-spaces of compact {Lie} groups},
journal = {Matemati\v{c}eskie zametki},
pages = {531--539},
year = {1973},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a6/}
}
A. G. Nasybullin. Nonhomogeneous $G$-spaces of compact Lie groups. Matematičeskie zametki, Tome 13 (1973) no. 4, pp. 531-539. http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a6/