Nonhomogeneous $G$-spaces of compact Lie groups
Matematičeskie zametki, Tome 13 (1973) no. 4, pp. 531-539.

Voir la notice de l'article provenant de la source Math-Net.Ru

The group $A(K)/N$ is computed, where $A(K)$ is the group of points of a Tate curve over a local field while $N$ is the group of universal norms from the group of points over a $\Gamma$-extension. As an application, the Mazur $l$-modulus of modular elliptic curves is computed for values of $l$ dividing the denominator of the absolute invariant.
@article{MZM_1973_13_4_a6,
     author = {A. G. Nasybullin},
     title = {Nonhomogeneous $G$-spaces of compact {Lie} groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {531--539},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a6/}
}
TY  - JOUR
AU  - A. G. Nasybullin
TI  - Nonhomogeneous $G$-spaces of compact Lie groups
JO  - Matematičeskie zametki
PY  - 1973
SP  - 531
EP  - 539
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a6/
LA  - ru
ID  - MZM_1973_13_4_a6
ER  - 
%0 Journal Article
%A A. G. Nasybullin
%T Nonhomogeneous $G$-spaces of compact Lie groups
%J Matematičeskie zametki
%D 1973
%P 531-539
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a6/
%G ru
%F MZM_1973_13_4_a6
A. G. Nasybullin. Nonhomogeneous $G$-spaces of compact Lie groups. Matematičeskie zametki, Tome 13 (1973) no. 4, pp. 531-539. http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a6/