Nonhomogeneous $G$-spaces of compact Lie groups
Matematičeskie zametki, Tome 13 (1973) no. 4, pp. 523-529
Cet article a éte moissonné depuis la source Math-Net.Ru
A duality theorem for a compact $G$-manifold $M$ of a compact Lie group $G$ is proved. For the case when all the orbits in $M$ are principal, it is proved that the quotient space of the complexification of $M$ by the action of the associated algebraic group $G^c$ is isomorphic to the quotient space of $M$ by the action of $G$.
@article{MZM_1973_13_4_a5,
author = {M. Ya. Blinkin},
title = {Nonhomogeneous $G$-spaces of compact {Lie} groups},
journal = {Matemati\v{c}eskie zametki},
pages = {523--529},
year = {1973},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a5/}
}
M. Ya. Blinkin. Nonhomogeneous $G$-spaces of compact Lie groups. Matematičeskie zametki, Tome 13 (1973) no. 4, pp. 523-529. http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a5/