Greatest prime factor of a~polynomial
Matematičeskie zametki, Tome 13 (1973) no. 4, pp. 515-522.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is established that for the greatest prime factor $P(x)$ of the value of an integral irreducible polynomial $f(x)$ of degree $n\ge2$ for integral $x>0$ the estimate $P(x)>c_f\ln\ln x$, $x>x_0(f)$ holds, where $c_f$ is a positive value effectively defined by the coefficients of the polynomial.
@article{MZM_1973_13_4_a4,
     author = {S. V. Kotov},
     title = {Greatest prime factor of a~polynomial},
     journal = {Matemati\v{c}eskie zametki},
     pages = {515--522},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a4/}
}
TY  - JOUR
AU  - S. V. Kotov
TI  - Greatest prime factor of a~polynomial
JO  - Matematičeskie zametki
PY  - 1973
SP  - 515
EP  - 522
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a4/
LA  - ru
ID  - MZM_1973_13_4_a4
ER  - 
%0 Journal Article
%A S. V. Kotov
%T Greatest prime factor of a~polynomial
%J Matematičeskie zametki
%D 1973
%P 515-522
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a4/
%G ru
%F MZM_1973_13_4_a4
S. V. Kotov. Greatest prime factor of a~polynomial. Matematičeskie zametki, Tome 13 (1973) no. 4, pp. 515-522. http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a4/