Greatest prime factor of a~polynomial
Matematičeskie zametki, Tome 13 (1973) no. 4, pp. 515-522
Voir la notice de l'article provenant de la source Math-Net.Ru
It is established that for the greatest prime factor $P(x)$ of the value of an integral irreducible polynomial $f(x)$ of degree $n\ge2$ for integral $x>0$ the estimate $P(x)>c_f\ln\ln x$, $x>x_0(f)$ holds, where $c_f$ is a positive value effectively defined by the coefficients of the polynomial.
@article{MZM_1973_13_4_a4,
author = {S. V. Kotov},
title = {Greatest prime factor of a~polynomial},
journal = {Matemati\v{c}eskie zametki},
pages = {515--522},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a4/}
}
S. V. Kotov. Greatest prime factor of a~polynomial. Matematičeskie zametki, Tome 13 (1973) no. 4, pp. 515-522. http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a4/