Monotonic subsequences in permutations of $n$ natural numbers
Matematičeskie zametki, Tome 13 (1973) no. 4, pp. 511-514.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S_n$ be the set of all permutations of the numbers $1,2,\dots,n$, and let $l_n(\sigma)$ be the number of terms in the maximal monotonic subsequence contained in $\sigma\in S_n$. If $M(l_n(\sigma))$ is the mean value of $l_n(\sigma)$ on $S_n$, then, for all except a finite number of n, the bound $M(l_n(\sigma))\le e\sqrt n$ is valid.
@article{MZM_1973_13_4_a3,
     author = {B. S. Stechkin},
     title = {Monotonic subsequences in permutations of $n$ natural numbers},
     journal = {Matemati\v{c}eskie zametki},
     pages = {511--514},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a3/}
}
TY  - JOUR
AU  - B. S. Stechkin
TI  - Monotonic subsequences in permutations of $n$ natural numbers
JO  - Matematičeskie zametki
PY  - 1973
SP  - 511
EP  - 514
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a3/
LA  - ru
ID  - MZM_1973_13_4_a3
ER  - 
%0 Journal Article
%A B. S. Stechkin
%T Monotonic subsequences in permutations of $n$ natural numbers
%J Matematičeskie zametki
%D 1973
%P 511-514
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a3/
%G ru
%F MZM_1973_13_4_a3
B. S. Stechkin. Monotonic subsequences in permutations of $n$ natural numbers. Matematičeskie zametki, Tome 13 (1973) no. 4, pp. 511-514. http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a3/