Monotonic subsequences in permutations of $n$ natural numbers
Matematičeskie zametki, Tome 13 (1973) no. 4, pp. 511-514
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $S_n$ be the set of all permutations of the numbers $1,2,\dots,n$, and let $l_n(\sigma)$ be the number of terms in the maximal monotonic subsequence contained in $\sigma\in S_n$. If $M(l_n(\sigma))$ is the mean value of $l_n(\sigma)$ on $S_n$, then, for all except a finite number of n, the bound $M(l_n(\sigma))\le e\sqrt n$ is valid.
@article{MZM_1973_13_4_a3,
author = {B. S. Stechkin},
title = {Monotonic subsequences in permutations of $n$ natural numbers},
journal = {Matemati\v{c}eskie zametki},
pages = {511--514},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a3/}
}
B. S. Stechkin. Monotonic subsequences in permutations of $n$ natural numbers. Matematičeskie zametki, Tome 13 (1973) no. 4, pp. 511-514. http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a3/