Birkhoff-recurrent solutions to algebraic equations
Matematičeskie zametki, Tome 13 (1973) no. 4, pp. 617-623.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers algebraic equations whose coefficients are continuous functions given on a connected topological group. It is proven that if the vector function made up of the coefficients is recurrent in the sense of Birkhoff and if the discriminant of the equation never vanishes, then each continuous solution is recurrent. The proof is based on the theory of extensions of dynamic systems.
@article{MZM_1973_13_4_a17,
     author = {I. U. Bronshtein},
     title = {Birkhoff-recurrent solutions to algebraic equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {617--623},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a17/}
}
TY  - JOUR
AU  - I. U. Bronshtein
TI  - Birkhoff-recurrent solutions to algebraic equations
JO  - Matematičeskie zametki
PY  - 1973
SP  - 617
EP  - 623
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a17/
LA  - ru
ID  - MZM_1973_13_4_a17
ER  - 
%0 Journal Article
%A I. U. Bronshtein
%T Birkhoff-recurrent solutions to algebraic equations
%J Matematičeskie zametki
%D 1973
%P 617-623
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a17/
%G ru
%F MZM_1973_13_4_a17
I. U. Bronshtein. Birkhoff-recurrent solutions to algebraic equations. Matematičeskie zametki, Tome 13 (1973) no. 4, pp. 617-623. http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a17/