Functions harmonic for a~Markov process
Matematičeskie zametki, Tome 13 (1973) no. 4, pp. 587-596.

Voir la notice de l'article provenant de la source Math-Net.Ru

The compactness property of a family of functions harmonic for a Markov process is studied and, in particular, an inequality of Harnack type is derived. It is shown that under broad conditions the property that a function be locally harmonic implies that it is harmonic.
@article{MZM_1973_13_4_a14,
     author = {M. G. Shur},
     title = {Functions harmonic for {a~Markov} process},
     journal = {Matemati\v{c}eskie zametki},
     pages = {587--596},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a14/}
}
TY  - JOUR
AU  - M. G. Shur
TI  - Functions harmonic for a~Markov process
JO  - Matematičeskie zametki
PY  - 1973
SP  - 587
EP  - 596
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a14/
LA  - ru
ID  - MZM_1973_13_4_a14
ER  - 
%0 Journal Article
%A M. G. Shur
%T Functions harmonic for a~Markov process
%J Matematičeskie zametki
%D 1973
%P 587-596
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a14/
%G ru
%F MZM_1973_13_4_a14
M. G. Shur. Functions harmonic for a~Markov process. Matematičeskie zametki, Tome 13 (1973) no. 4, pp. 587-596. http://geodesic.mathdoc.fr/item/MZM_1973_13_4_a14/