Connections between the approximative and spectral properties of metric automorphisms
Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 403-409
Voir la notice de l'article provenant de la source Math-Net.Ru
To each automorphism $T$ of a Lebesgue space $(X,\mu) there corresponds a~unitary operator $U_T$ in the space $L^2(X,\mu)$, defined by the formula $(U_Tf)(x)=f(Tx)$, $f\in L^2(X,\mu)$, $x\in X$. In this note we investigate the special properties of the operator $U_T$ as a~function of the rate of approximation of the automorphism $T$ by periodic transformations (for the definition of the rate of approximation of a metric automorphism see [1]).
@article{MZM_1973_13_3_a8,
author = {A. M. Stepin},
title = {Connections between the approximative and spectral properties of metric automorphisms},
journal = {Matemati\v{c}eskie zametki},
pages = {403--409},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a8/}
}
A. M. Stepin. Connections between the approximative and spectral properties of metric automorphisms. Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 403-409. http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a8/