Connections between the approximative and spectral properties of metric automorphisms
Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 403-409.

Voir la notice de l'article provenant de la source Math-Net.Ru

To each automorphism $T$ of a Lebesgue space $(X,\mu) there corresponds a~unitary operator $U_T$ in the space $L^2(X,\mu)$, defined by the formula $(U_Tf)(x)=f(Tx)$, $f\in L^2(X,\mu)$, $x\in X$. In this note we investigate the special properties of the operator $U_T$ as a~function of the rate of approximation of the automorphism $T$ by periodic transformations (for the definition of the rate of approximation of a metric automorphism see [1]).
@article{MZM_1973_13_3_a8,
     author = {A. M. Stepin},
     title = {Connections between the approximative and spectral properties of metric automorphisms},
     journal = {Matemati\v{c}eskie zametki},
     pages = {403--409},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a8/}
}
TY  - JOUR
AU  - A. M. Stepin
TI  - Connections between the approximative and spectral properties of metric automorphisms
JO  - Matematičeskie zametki
PY  - 1973
SP  - 403
EP  - 409
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a8/
LA  - ru
ID  - MZM_1973_13_3_a8
ER  - 
%0 Journal Article
%A A. M. Stepin
%T Connections between the approximative and spectral properties of metric automorphisms
%J Matematičeskie zametki
%D 1973
%P 403-409
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a8/
%G ru
%F MZM_1973_13_3_a8
A. M. Stepin. Connections between the approximative and spectral properties of metric automorphisms. Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 403-409. http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a8/