A boundary value problem for a differential equation of second order
Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 373-384
Cet article a éte moissonné depuis la source Math-Net.Ru
We find the spectrum and prove a theorem on the expansion of an arbitrary function satisfying certain smoothness conditions in terms of the root functions of a boundary value problem of the type \begin{gather*} -y''+q(x)+\frac a{x^2}y=\lambda y,\quad y(0)=0, \\ M(\lambda)y(a)+N(\lambda)y(b)=0, \end{gather*} where $0, $a\ge0$, $M(\lambda)$ and $N(\lambda)$ are polynomials with complex coefficients, and $q(x)$ is a sufficiently smooth complex-valued function.
@article{MZM_1973_13_3_a5,
author = {B. V. Verbitskii},
title = {A~boundary value problem for a~differential equation of second order},
journal = {Matemati\v{c}eskie zametki},
pages = {373--384},
year = {1973},
volume = {13},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a5/}
}
B. V. Verbitskii. A boundary value problem for a differential equation of second order. Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 373-384. http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a5/