On some criteria for the univalence of analytic functions
Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 359-366
Voir la notice de l'article provenant de la source Math-Net.Ru
Criteria for the univalence of functions $f(z)$ which are regular in the domain $|z|1$ are obtained in the form of restrictions on the modulus of the quotient $f''(z)[f'(z)]^{-1}$. Analogous results are obtained also for functions which are analytic in the interior of the unit disk except for a simple pole at infinity.
@article{MZM_1973_13_3_a3,
author = {S. N. Kudryashov},
title = {On some criteria for the univalence of analytic functions},
journal = {Matemati\v{c}eskie zametki},
pages = {359--366},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a3/}
}
S. N. Kudryashov. On some criteria for the univalence of analytic functions. Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 359-366. http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a3/