Estimates for the coefficients of univalent functions in terms of the second coefficient
Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 351-357.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the coefficients $b_n$ of an odd function $f(z)=z+\sum^\infty_{k=1}b_kz^{2k+1}$, regular in the unit disk, we obtain the estimate \begin{equation} |b_n|\le\frac1{\sqrt2}\sqrt{1+|b_1|^2}\exp\frac12(\delta+\frac12|b_1|^2), \quad\text{where}\;\delta=0,312, \tag{1} \end{equation} from which it follows that $|b_n|\le1$, if $|b_1|\le0,524$. It follows from (1) that the coefficients $c_n, n=3, 4\ldots$ of a regular function $f(z)=z+\sum^\infty_{k=2}c_kz^k$, univalent in the unit desk, satisfy \begin{equation} |b_n|\le\frac1{\sqrt2}\sqrt{1+|b_1|^2}\exp\frac12(\delta+\frac12|b_1|^2), \quad\text{where}\;\delta=0,312, \tag{2} \end{equation} in particular, $|c_n|\le n$, if $|c_2|\le1,046$.
@article{MZM_1973_13_3_a2,
     author = {L. P. Il'ina},
     title = {Estimates for the coefficients of univalent functions in terms of the second coefficient},
     journal = {Matemati\v{c}eskie zametki},
     pages = {351--357},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a2/}
}
TY  - JOUR
AU  - L. P. Il'ina
TI  - Estimates for the coefficients of univalent functions in terms of the second coefficient
JO  - Matematičeskie zametki
PY  - 1973
SP  - 351
EP  - 357
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a2/
LA  - ru
ID  - MZM_1973_13_3_a2
ER  - 
%0 Journal Article
%A L. P. Il'ina
%T Estimates for the coefficients of univalent functions in terms of the second coefficient
%J Matematičeskie zametki
%D 1973
%P 351-357
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a2/
%G ru
%F MZM_1973_13_3_a2
L. P. Il'ina. Estimates for the coefficients of univalent functions in terms of the second coefficient. Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 351-357. http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a2/