On the order of an~approximation of functions on sets of positive measure by linear positive polynomial operators
Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 457-468.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that at almost all points the order of approximation, even of one of the functions 1, $\cos x$, $\sin x$ by means of a sequence of linear positive polynomial operators having uniformly bounded norms, is not higher than $1/n^2$. Refinements of this result are given for operators of convolution type.
@article{MZM_1973_13_3_a16,
     author = {R. K. Vasil'ev},
     title = {On the order of an~approximation of functions on sets of positive measure by linear positive polynomial operators},
     journal = {Matemati\v{c}eskie zametki},
     pages = {457--468},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a16/}
}
TY  - JOUR
AU  - R. K. Vasil'ev
TI  - On the order of an~approximation of functions on sets of positive measure by linear positive polynomial operators
JO  - Matematičeskie zametki
PY  - 1973
SP  - 457
EP  - 468
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a16/
LA  - ru
ID  - MZM_1973_13_3_a16
ER  - 
%0 Journal Article
%A R. K. Vasil'ev
%T On the order of an~approximation of functions on sets of positive measure by linear positive polynomial operators
%J Matematičeskie zametki
%D 1973
%P 457-468
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a16/
%G ru
%F MZM_1973_13_3_a16
R. K. Vasil'ev. On the order of an~approximation of functions on sets of positive measure by linear positive polynomial operators. Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 457-468. http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a16/