On the order of an approximation of functions on sets of positive measure by linear positive polynomial operators
Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 457-468
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that at almost all points the order of approximation, even of one of the functions 1, $\cos x$, $\sin x$ by means of a sequence of linear positive polynomial operators having uniformly bounded norms, is not higher than $1/n^2$. Refinements of this result are given for operators of convolution type.
@article{MZM_1973_13_3_a16,
author = {R. K. Vasil'ev},
title = {On the order of an~approximation of functions on sets of positive measure by linear positive polynomial operators},
journal = {Matemati\v{c}eskie zametki},
pages = {457--468},
year = {1973},
volume = {13},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a16/}
}
TY - JOUR AU - R. K. Vasil'ev TI - On the order of an approximation of functions on sets of positive measure by linear positive polynomial operators JO - Matematičeskie zametki PY - 1973 SP - 457 EP - 468 VL - 13 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a16/ LA - ru ID - MZM_1973_13_3_a16 ER -
R. K. Vasil'ev. On the order of an approximation of functions on sets of positive measure by linear positive polynomial operators. Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 457-468. http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a16/