The minimal radical and weakly irreducible groups
Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 447-456
Cet article a éte moissonné depuis la source Math-Net.Ru
Under certain restrictions on a class of groups $\mathfrak M$, closed with respect to epimorphisms, we prove the theorem: a nonunit group contains no accessible $\mathfrak M$-subgroups except the unit group if and only if it is approximated by weakly irreducible (after Birkhoff) groups which contain no nonunit accessible $\mathfrak M$-subgroups.
@article{MZM_1973_13_3_a15,
author = {K. K. Shchukin},
title = {The minimal radical and weakly irreducible groups},
journal = {Matemati\v{c}eskie zametki},
pages = {447--456},
year = {1973},
volume = {13},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a15/}
}
K. K. Shchukin. The minimal radical and weakly irreducible groups. Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 447-456. http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a15/