The minimal radical and weakly irreducible groups
Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 447-456.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under certain restrictions on a class of groups $\mathfrak M$, closed with respect to epimorphisms, we prove the theorem: a nonunit group contains no accessible $\mathfrak M$-subgroups except the unit group if and only if it is approximated by weakly irreducible (after Birkhoff) groups which contain no nonunit accessible $\mathfrak M$-subgroups.
@article{MZM_1973_13_3_a15,
     author = {K. K. Shchukin},
     title = {The minimal radical and weakly irreducible groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {447--456},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a15/}
}
TY  - JOUR
AU  - K. K. Shchukin
TI  - The minimal radical and weakly irreducible groups
JO  - Matematičeskie zametki
PY  - 1973
SP  - 447
EP  - 456
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a15/
LA  - ru
ID  - MZM_1973_13_3_a15
ER  - 
%0 Journal Article
%A K. K. Shchukin
%T The minimal radical and weakly irreducible groups
%J Matematičeskie zametki
%D 1973
%P 447-456
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a15/
%G ru
%F MZM_1973_13_3_a15
K. K. Shchukin. The minimal radical and weakly irreducible groups. Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 447-456. http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a15/