On the product of finitely generated Abelian groups
Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 443-446.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that if a group $G$ is a product of Abelian subgroups $A$ and $B$ one of which is finitely generated, then the group $G$ will have a nontrivial normal subgroup that is contained either in $A$, or in $B$.
@article{MZM_1973_13_3_a14,
     author = {N. F. Sesekin},
     title = {On the product of finitely generated {Abelian} groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {443--446},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a14/}
}
TY  - JOUR
AU  - N. F. Sesekin
TI  - On the product of finitely generated Abelian groups
JO  - Matematičeskie zametki
PY  - 1973
SP  - 443
EP  - 446
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a14/
LA  - ru
ID  - MZM_1973_13_3_a14
ER  - 
%0 Journal Article
%A N. F. Sesekin
%T On the product of finitely generated Abelian groups
%J Matematičeskie zametki
%D 1973
%P 443-446
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a14/
%G ru
%F MZM_1973_13_3_a14
N. F. Sesekin. On the product of finitely generated Abelian groups. Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 443-446. http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a14/