Convergence of double series
Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 341-350.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the question of the mutual relationship of different forms of convergence of double series. When the condition $$a_{ik}=o\left(\frac1{i^2+k^2}\right)$$ is satisfied, the following are equivalent: convergence over squares, convergence over rectangles, convergence over circles. The conditions obtained cannot be strengthened. Several deductions are made relating to the convergence of double trigonometric series.
@article{MZM_1973_13_3_a1,
     author = {M. Bakhbukh},
     title = {Convergence of double series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {341--350},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a1/}
}
TY  - JOUR
AU  - M. Bakhbukh
TI  - Convergence of double series
JO  - Matematičeskie zametki
PY  - 1973
SP  - 341
EP  - 350
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a1/
LA  - ru
ID  - MZM_1973_13_3_a1
ER  - 
%0 Journal Article
%A M. Bakhbukh
%T Convergence of double series
%J Matematičeskie zametki
%D 1973
%P 341-350
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a1/
%G ru
%F MZM_1973_13_3_a1
M. Bakhbukh. Convergence of double series. Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 341-350. http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a1/