On systems of convergence in measure for $l_2$
Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 337-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article it is proved that every system of convergence in measure for $l_2$ can be made orthonormal by correction on a set of arbitrarily small measure.
@article{MZM_1973_13_3_a0,
     author = {E. M. Nikishin},
     title = {On systems of convergence in measure for $l_2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {337--340},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a0/}
}
TY  - JOUR
AU  - E. M. Nikishin
TI  - On systems of convergence in measure for $l_2$
JO  - Matematičeskie zametki
PY  - 1973
SP  - 337
EP  - 340
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a0/
LA  - ru
ID  - MZM_1973_13_3_a0
ER  - 
%0 Journal Article
%A E. M. Nikishin
%T On systems of convergence in measure for $l_2$
%J Matematičeskie zametki
%D 1973
%P 337-340
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a0/
%G ru
%F MZM_1973_13_3_a0
E. M. Nikishin. On systems of convergence in measure for $l_2$. Matematičeskie zametki, Tome 13 (1973) no. 3, pp. 337-340. http://geodesic.mathdoc.fr/item/MZM_1973_13_3_a0/