On the uniqueness of a continuous solution of the problem of decay of an arbitrary discontinuity for a gradient system
Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 251-258
Cet article a éte moissonné depuis la source Math-Net.Ru
S. K. Godunov has established that the Lagrange variational equations, the differential equations of crystal optics, belong to a class of gradient systems. The problem of the decay of an arbitrary discontinuity for this system is considered herein, and an example is constructed of the ambiguity of a continuous solution of this problem. Moreover, some sufficient conditions for uniqueness of the continuous solution are indicated.
@article{MZM_1973_13_2_a9,
author = {V. A. Tupchiev},
title = {On the uniqueness of a~continuous solution of the problem of decay of an~arbitrary discontinuity for a~gradient system},
journal = {Matemati\v{c}eskie zametki},
pages = {251--258},
year = {1973},
volume = {13},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a9/}
}
TY - JOUR AU - V. A. Tupchiev TI - On the uniqueness of a continuous solution of the problem of decay of an arbitrary discontinuity for a gradient system JO - Matematičeskie zametki PY - 1973 SP - 251 EP - 258 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a9/ LA - ru ID - MZM_1973_13_2_a9 ER -
V. A. Tupchiev. On the uniqueness of a continuous solution of the problem of decay of an arbitrary discontinuity for a gradient system. Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 251-258. http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a9/