On the uniqueness of a~continuous solution of the problem of decay of an~arbitrary discontinuity for a~gradient system
Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 251-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

S. K. Godunov has established that the Lagrange variational equations, the differential equations of crystal optics, belong to a class of gradient systems. The problem of the decay of an arbitrary discontinuity for this system is considered herein, and an example is constructed of the ambiguity of a continuous solution of this problem. Moreover, some sufficient conditions for uniqueness of the continuous solution are indicated.
@article{MZM_1973_13_2_a9,
     author = {V. A. Tupchiev},
     title = {On the uniqueness of a~continuous solution of the problem of decay of an~arbitrary discontinuity for a~gradient system},
     journal = {Matemati\v{c}eskie zametki},
     pages = {251--258},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a9/}
}
TY  - JOUR
AU  - V. A. Tupchiev
TI  - On the uniqueness of a~continuous solution of the problem of decay of an~arbitrary discontinuity for a~gradient system
JO  - Matematičeskie zametki
PY  - 1973
SP  - 251
EP  - 258
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a9/
LA  - ru
ID  - MZM_1973_13_2_a9
ER  - 
%0 Journal Article
%A V. A. Tupchiev
%T On the uniqueness of a~continuous solution of the problem of decay of an~arbitrary discontinuity for a~gradient system
%J Matematičeskie zametki
%D 1973
%P 251-258
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a9/
%G ru
%F MZM_1973_13_2_a9
V. A. Tupchiev. On the uniqueness of a~continuous solution of the problem of decay of an~arbitrary discontinuity for a~gradient system. Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 251-258. http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a9/