Exact bounds for the uniform approximation of continuous periodic functions by $r$-th order splines
Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 217-228
Voir la notice de l'article provenant de la source Math-Net.Ru
We solve the problem of determining exact bounds for the uniform approximation of continuous periodic functions by $r$-th order interpolation splines in a space $C$ and on a class $H_\omega$ specified by the convex modulus of continuity $\omega(t)$.
@article{MZM_1973_13_2_a5,
author = {A. A. Zhensykbaev},
title = {Exact bounds for the uniform approximation of continuous periodic functions by $r$-th order splines},
journal = {Matemati\v{c}eskie zametki},
pages = {217--228},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {1973},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a5/}
}
TY - JOUR AU - A. A. Zhensykbaev TI - Exact bounds for the uniform approximation of continuous periodic functions by $r$-th order splines JO - Matematičeskie zametki PY - 1973 SP - 217 EP - 228 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a5/ LA - ru ID - MZM_1973_13_2_a5 ER -
A. A. Zhensykbaev. Exact bounds for the uniform approximation of continuous periodic functions by $r$-th order splines. Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 217-228. http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a5/