Exact bounds for the uniform approximation of continuous periodic functions by $r$-th order splines
Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 217-228.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve the problem of determining exact bounds for the uniform approximation of continuous periodic functions by $r$-th order interpolation splines in a space $C$ and on a class $H_\omega$ specified by the convex modulus of continuity $\omega(t)$.
@article{MZM_1973_13_2_a5,
     author = {A. A. Zhensykbaev},
     title = {Exact bounds for the uniform approximation of continuous periodic functions by $r$-th order splines},
     journal = {Matemati\v{c}eskie zametki},
     pages = {217--228},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a5/}
}
TY  - JOUR
AU  - A. A. Zhensykbaev
TI  - Exact bounds for the uniform approximation of continuous periodic functions by $r$-th order splines
JO  - Matematičeskie zametki
PY  - 1973
SP  - 217
EP  - 228
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a5/
LA  - ru
ID  - MZM_1973_13_2_a5
ER  - 
%0 Journal Article
%A A. A. Zhensykbaev
%T Exact bounds for the uniform approximation of continuous periodic functions by $r$-th order splines
%J Matematičeskie zametki
%D 1973
%P 217-228
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a5/
%G ru
%F MZM_1973_13_2_a5
A. A. Zhensykbaev. Exact bounds for the uniform approximation of continuous periodic functions by $r$-th order splines. Matematičeskie zametki, Tome 13 (1973) no. 2, pp. 217-228. http://geodesic.mathdoc.fr/item/MZM_1973_13_2_a5/